In this work, we detailedly introduced the whole ideas of rkdg finite element method and the theory of constructing gas-kinetic schemes based on boltzmann equation . and then presented a kind of new computational method for solving id and 2d compressible euler equations, i . e . firstly, we discretize euler equations in the space with discontinuous galerkin finite element method; secondly, we discretize temporal variable t with runge-kutta formula; thirdly, for numerical fluxes constructing, we give two kinds of different numerical fluxes-kfvs and bgk numerical fluxes by using gas-kinetic schemes 本文分別對rkdg有限元方法的整個思想和基于boltzmann方程的分子動力學格式的構造思想給予了詳細的介紹,并分別結合rkdg有限元方法與kfvs數值通量和bgk數值通量的構造方法,給出了一種求解一維、二維可壓縮流體力學方程組新的計算方法,即,我們先用間斷有限元方法進行空間離散,然后再對所得到的半離散格式使用runge-kuttatvd方法進行時間離散,得到全離散格式。